

CubeSat Kit™ Motherboard (MB)

Hardware Revision: É

Single Board Computer Motherboard for Harsh Environments

Applications

- CubeSat nanosatellite C&DH, TT&C, mass storage and battery / power switching
- General-purpose low-power computing in a PC/104-size form factor
- Remote sensing for harsh environments

Features

- Open architecture accepts Pluggable Processor Modules (PPMs)
- Compatible with a wide range of supply and I/O voltages
- Extremely low (<10µA) quiescent current
- Integrated peripherals:
 - I2C real-time clock
 - 3V Lithium backup battery
 - USB 2.0 device interface for pre-launch communications, battery charging and power
 - MMC/SD card socket for mass storage (32MB to 2GB and beyond)
- Support for a wide range of transceivers
- Stackable 104-pin CubeSat Kit Bus connectors includes processor's complete I/O space, user-assignable signals and more
- Extensible to multiprocessor architectures, with processor reset / NMI pin on bus
- Direct wiring for heavy-duty Remove-Before-Flight (battery) and Separation (power) switches
- Comprehensive overcurrent, overvoltage & undervoltage (reset) protection
- Independent latchup (device overcurrent) protection on critical subsystems
- Flexible dual-input-range high-power external DC power input
- Bus override for critical power and data/control paths
- Power consumption can be monitored externally
- Wiring-free module interconnect scheme
- PC/104-size footprint, with +5V and GND on PC/104 J1/J2 connectors

ORDERING INFORMATION

Pumpkin P/N 710-00484

Option Code	PPM Connector Height	CubeSat Kit Bus Connector ¹
/00 (standard)	+6mm	non-stackthrough
/10	+6mm	stackthrough

Contact factory for availability of optional configurations. Option code /00 shown.

CAUTION

Electrostatic Sensitive Devices

Handle with Care

- 6-layer gold-plated bluesoldermask PCB with dual ground planes for enhanced signal integrity
- Compatible with Pumpkin's Salvo™ RTOS and HCC-Embedded's EFFS-THIN SD Card file FAT file system for ease of programming
- Backwards-compatible with CubeSat Kit Rev. A through Rev. C FM430, and Rev. D Motherboard

¹ Stackthrough connectors are used in CubeSat Kit configurations where the MB is not in Slot 0.

CHANGELOG

Rev.	Date	Author	Comments
A	20120327	AEK	Initial release. Based on Motherboard Rev D datasheet.
В	20120417	AEK	Corrected VREF1 & VREF2 pin numbers on H1.

OPERATIONAL DESCRIPTION

The CubeSat Kit Motherboard (MB) is the fifth generation of Pumpkin's line of single-board computers (SBCs) designed for use in the CubeSat Kit and elsewhere.

The MB has a socket to accommodate a Pluggable Processor Module (PPM). PPMs can be sourced from Pumpkin, third parties or can be created by the end-user of a CubeSat Kit. Thus, a wide range of potential processors (e.g. MSP430, 8051, AVR®, PICmicro®, ARM®, x86, FPGA, ASIC, etc.) can be used with the MB via a suitable PPM.

The MB has a flexible power scheme that permits the use of PPMs with different power and I/O requirements. All of the MB's on-board peripheral I/O (RTC, MHX interface, USB & SD Card) is level-shifted and zero-power-isolated to interface with PPMs at any I/O voltage from +1.65V to +5.5V.

The MB provides the PPM socket with all of the CubeSat Kit Bus Connector I/O and power signals, as well as some dedicated and special-purpose MB signals.²

Special attention in the PCB design has been paid to avoid any isolated dielectric regions resulting from unconnected swatches of copper.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Units
Operating temperature ³	T _A	-40 to +85	°C
Voltage on +5v_USB bus			
Voltage on +5v_sys bus ⁴			
Voltage on pwr_mmx bus		-0.3 to +6	V
Voltage on VCC_SYS bus			
Voltage on -FAULT open-collector output			
Voltage on local vcc bus		-0.3 to +5.5	V
Voltage on any I/O pin		-0.3 to	V
		(VCC + 0.3)	v
Voltage on local VCC_SD bus		-0.3 to +3.6	V
Voltage on VBACKUP bus		-0.3 to +3.6	V
Voltage at external +5V power connector J1 ⁵		-25 to +25	V
DC current through any pin of PPM Connector	I _{PIN1 MAX}	1.2	Α
DC current through any pin of CubeSat Kit Bus Connector ⁶	I _{PIN2 MAX}	3	А
DC current through external +5V power connector J1 ⁷	I _{EXT_MAX}	4	А
DC current through Remove-Before-Flight or Separation Switches ⁸	I _{SW_MAX}	10	А

² The only signals from the CubeSat Kit Bus Connector that are not presented at the PPM connector are the so-ss signals (Remove-Before-Flight and Separation Switches) and direct MHX interface signals (e.g., -RTS_MHX, etc.).

³ Does not include any SD card fitted to the MB. Typical commercial SD card operating temperatures are 0°C to + 55°C. Typical industrial extended temperature range SD cards operate over -40°C to + 85°C.

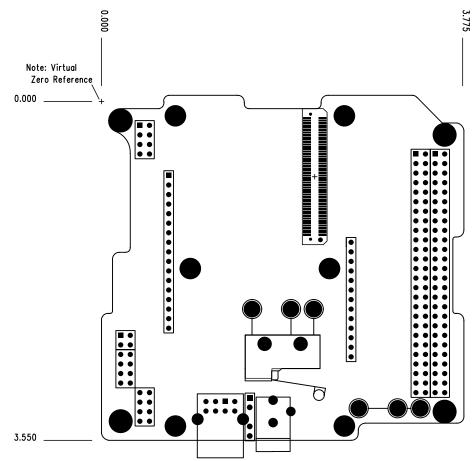
⁴ A high-speed 5V logic-level TVS is fitted on +5v_sys.

⁵ Voltages between 0V and +5.5V are passed through to +5v_sys on the CubeSat Kit Bus.

⁶ Current derating is a function of temperature, number of pins in use and connector geometry. Users should consult the connector manufacturer's test results for more information. See *Connectors*, below, for manufacturer and part number information as used on the MB.

⁷ Limited by a fast-blo 4A fuse.

⁸ Make only. Not rated for repetitive make and break cycles of dc current. AC rating for switches alone. The RBF Switch sw1 and the Separation Switch sw2 are typically wired by the user directly to the MB to simplify s[5..0] bus connections. User should analyze temperature rise on inner layers as a function of currents passed through RBF and Separation Switches. For highcurrent applications, wiring directly to the switch (instead of indirectly through the CubeSat Kit Bus connector's s[5..0] pins and the MB PCB) may be preferred. Switches are Cherry P/N E62-10H and E62-10K.


Parameter	Conditions / Notes	Symbol	Min	Тур	Max	Units
	With standoff and fastener hardware to accept a short PPM (e.g., PPM A1) mounted 9mm above the MB			77		
Mass ⁹	With PPM A1 mounted using abovementioned hardware ¹⁰			88		a
	With PPM A1 mounted using abovementioned hardware, 10mm CubeSat Kit Bus Connector extenders and 15.5mm standoffs for MHX transceiver			103		g
	Without PPM, MHX transceiver or 10mm CubeSat Kit Bus Connector extenders fitted				11.4	
Height of components above PCB	With PPM fitted, and without MHX transceiver or 10mm CubeSat Kit Bus Connector extenders fitted				12.5	mm
	With MHX transceiver and 10mm CubeSat Kit Bus Connector extender fitted				24.5	
Height of components below PCB					3.5	mm
PCB width	Corner hele nettern metches			96		mm
PCB length	Corner hole pattern matches PC/104			90		mm
PCB thickness	FC/104			1.6		mm
Mating external power jack	Outer diameter				5.5	100 100
dimensions	Internal diameter		2.1			mm
CubeSat Kit Bus Connector terminal pitch	Horizontal or vertical distance to nearest terminal			2.54		mm
Switch terminal hole diameter	For C, NO & NC switch terminals ¹¹			2.54		mm
Separation Switch pin engagement travel	Distance from flush with foot when C connects to NC			1.75		mm
Compatible coin cell	Diameter			12		mm
battery dimensions	Height		2.0	2.5	2.5	mm

PHYSICAL CHARACTERISTICS

 ⁹ With Remove-Before-Flight Switch sw1 and cover fitted. No SD Card in socket.
¹⁰ PPMs are not included with each MB, and must be purchased separately. Data supplied as an example only.

¹¹ <u>C</u>ommon, <u>N</u>ormally <u>O</u>pen and <u>N</u>ormally <u>C</u>losed.

¹² Dimensions in inches.

ELECTRICAL CHARACTERISTICS

(T = 25°C, +5V bus = +5V unless otherwise noted)

Parameter	Conditions / Notes	Symbol	Min	Тур	Max	Units	
Operating voltage	I/O voltage for all on-board peripherals except RTC and SD Card interface	V _{cc}	1.65		5.5	V	
operating voltage	RTC ¹³		2.7		5.5	V	
	SD Card interface ¹⁴	V _{CC SD}		3.3		V	
Maximum external dc voltage	External dc voltage increased until protection circuitry forces disconnect	$V_{\text{EXT}_{\text{TRIP}}}$			5.5	v	
Backup battery voltage	Feeds VBACKUP through R20 (4.7kΩ).	V _{BT1}		3.0	3.5	V	
Voltage drop from	I _{IN} = 5mA				10		
external dc power connector to +5v_sys ¹⁵	I _{IN} = 4A	V _{EXT_DROP}		400		mV	
	Typical operation	I _{OP}		500		μA	
Operating current	All control outputs inactive, PPM asleep	I _{SLEEP}		5	10	μA	
RTC crystal frequency	No external capacitors	$f_{CLK RTC}$	32	.768 ± 0.0	01	kHz	
USB bus current ¹⁶	Powered over USB	I _{USB MAX}			500	mA	
Overcurrent trip point for SD Card socket	Set by R61	I _{TRIP_SD}		170		mA	
Overcurrent trip point for MHX transceiver socket	Set by R23	I _{trip_mhx}		2400		mA	
Time to switch between +5v_svs and +5v_usb power sources	Automatic				1	μs	
Data rate through any on-board isolator (ບ1-ບ3, ບ16-ບ18)	May be reduced (due to parasitic capacitance) by inline resistors (e.g., R9 - R12 , R59) where fitted with non-zero values		50			MHz	

USB DEVICE CHARACTERISTICS

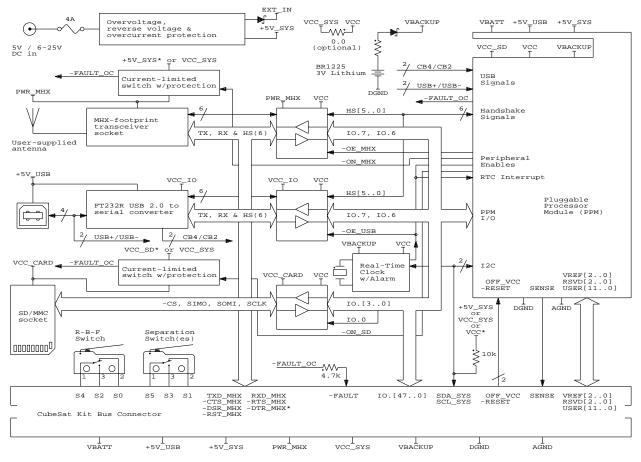
Parameter	Conditions / Notes	Value
Speed ¹⁷	USB 2.0 compatible	Low Speed (1.5Mbps) Full Speed (12Mbps)
Vendor ID (VID)		0403
Product ID (PID)		F020
Reported options	Unique serial number	/07F0
Reported serial number	Format: PUdddddd	unique to each unit
Required driver	See CubeSat Kit website	provided by Pumpkin

¹³ MB is fitted with M41T81S RTC. vcc of +2.7V or higher is required for proper operation. Operation at lower values of vcc requires the removal of the RTC and/or its substitution with one capable of running at voltages lower than +2.7V.

¹⁴ SD Card standard requires operation at +3.3V. Lower-voltage SD cards can be accommodated by PPM supplying vcc_sD with an appropriate voltage, and by using SD cards specified for lower operating voltages.

 ¹⁵ Measured at +5V system test point **TP9**. External +5V passes through a fuse and an active overvoltage protection circuit before reaching system +5V. MB PCB is implemented with 2oz copper to minimize resistance of power traces.

¹⁶ The MB's USB interface is configured at the factory to report a maximum current of 500mA for a bus-powered device to any attached USB host.


¹⁷ Actual throughput is dependent on coding in and configuration of processor, and is often much lower.

Backup Battery

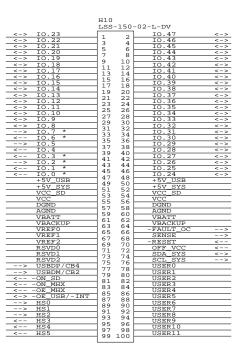
The MB has a replaceable BR1225 3V Lithium coin cell to serve as a backup battery **BT1** for real-time clocks and other components requiring battery backup of volatile information.

Battery **BT1** is held in place by a coin cell battery holder in one corner of the underside of the MB. The allmetal battery holder is oriented in such a way that once installed onto a CubeSat Kit Base Plate, the battery cannot slide out of its battery holder and is thereby physically restrained along five of six axes. However, since the battery has a conductive outer shell, excessive movement of the battery along its insertion / removal axis could result in a short if it were to contact the Base Plate. Therefore insulating Kapton tape and/or an epoxy or silicone adhesive should be applied to the battery and battery holder.

Alternately, the customer can feed **VBACKUP** on the CubeSat Kit bus via their own backup battery located elsewhere in the system.

BLOCK DIAGRAM

': Default configuration, selectable via 0 Ohm resistors / jumpers.


PPM PIN DESCRIPTIONS

The PPM connector **H10** connects resources on the MB and accessible via the CubeSat Kit Bus connector to a PPM.¹⁸

Those signals that are connected directly to the PPM connector and to the CubeSat Kit Bus connectors are tagged under the CSKB label below.¹⁹ Signals marked with an '*' are associated with dedicated peripherals on the MB. They may also be used with off-board peripherals through the proper use of MB peripheral enables and MB power control.

The *potential* for a pin's function is described by the I/O field. The *recommended usage* (as a digital or analog input or output, or as a power pin) is listed in the Description field. I/O pins can generally be configured as general-purpose I/O if the recommended usage is not desired.

Inputs are signals *from* the MB *to* the PPM's processor **U1** or other circuitry. *Outputs* are signals *from* the PPM's processor **U1** or other circuitry *to* the MB.

 $^{^{18}}$ Not included. PPMs are purchased separately from MBs.

¹⁹ The CubeSat Kit's system peripherals are numbered from 0 onwards (e.g., UART0, SPI0, etc.), and this nomenclature is used when referring to a PPM or CSK bus signal.

PPM PIN DESCRIPTIONS - I/O

Name	Pin	I/O	CSKB	Description
				-cs_sp. Controls SD Card interface. Part of the MB's SD
10.0	H10.47	I/O	•	card interface. Normally configured as an output from the PPM processor.
				SDO0. SPI master data out. Part of the MB's SD card
10.1	H10.45	I/O	•	interface. Normally configured as an output from the PPM
				processor.
10.2	H10.43	I/O	•	SDI0. SPI master data in. Part of the MB's SD card interface.
				Normally configured as an input to the PPM processor.
IO.3	H10.41	I/O	•	SCK0. SPI clock. Part of the MB's SD card interface.
				Normally configured as an output from the PPM processor.
IO.4	H10.39	I/O	•	UTX0. Tx0 data out. Often configured as an output from the
				PPM processor.
IO.5	H10.37	I/O	•	URX0. Rx0 data in. Often configured as an input to the PPM
				processor. UTX1. Tx1 data out to MHX transceiver or USB. Part of the
10.6	H10.35	I/O	•	MB's MHX/USB interface. Normally configured as an output
10.0	1110.00	"0	•	from the PPM processor.
				URX1. Rx1 data in from MHX transceiver or USB. Part of the
IO.7	H10.33	I/O	•	MB's MHX/USB interface. Normally configured as an input to
				the PPM processor.
IO.8	H10.31	I/O	•	General-purpose I/O.
IO.9	H10.29	I/O	٠	General-purpose I/O.
IO.10	H10.27	I/O	٠	General-purpose I/O.
10.11	H10.25	I/O	•	General-purpose I/O.
10.12	H10.23	I/O	•	General-purpose I/O.
10.13	H10.21	I/O	•	General-purpose I/O.
IO.14	H10.19	I/O	•	General-purpose I/O.
10.15	H10.17	I/O	•	General-purpose I/O.
10.16	H10.15	I/O	•	General-purpose I/O.
10.17	H10.13	I/O	•	General-purpose I/O.
10.18	H10.11	I/O	•	General-purpose I/O.
IO.19	H10.9	I/O	•	General-purpose I/O.
10.20	H10.7	I/O	•	General-purpose I/O.
IO.21 IO.22	H10.5	I/O	•	General-purpose I/O.
10.22	H10.3 H10.1	1/O 1/O	•	General-purpose I/O.
10.23		1/O	•	General-purpose I/O.
10.24	H10.48 H10.46	1/O	•	General-purpose I/O. General-purpose I/O.
10.26	H10.44	1/0	•	General-purpose I/O.
10.27	H10.44	1/0	•	General-purpose I/O.
10.28	H10.42	1/0	•	General-purpose I/O.
10.29	H10.38	I/O	•	General-purpose I/O.
IO.30	H10.36	I/O	•	General-purpose I/O.
IO.31	H10.34	I/O	•	General-purpose I/O.
IO.32	H10.32	I/O	•	General-purpose I/O.
IO.33	H10.30	I/O	•	General-purpose I/O.
IO.34	H10.28	I/O	•	General-purpose I/O.
IO.35	H10.26	I/O	•	General-purpose I/O.
IO.36	H10.24	I/O	•	General-purpose I/O.
IO.37	H10.22	I/O	•	General-purpose I/O.
IO.38	H10.20	I/O	•	General-purpose I/O.
IO.39	H10.18	I/O	•	General-purpose I/O.
10.40	H10.16	I/O	•	General-purpose I/O. Normally configured as analog input
				ANO to the PPM processor.

10.41	H10.14	I/O	•	General-purpose I/O. Normally configured as analog input AN1 to the PPM processor.
10.42	H10.12	I/O	•	General-purpose I/O. Normally configured as analog input AN2 to the PPM processor.
10.43	H10.10	I/O	•	General-purpose I/O. Normally configured as analog input AN3 to the PPM processor.
10.44	H10.8	I/O	•	General-purpose I/O. Normally configured as analog input AN4 to the PPM processor.
10.45	H10.6	I/O	•	General-purpose I/O. Normally configured as analog input AN5 to the PPM processor.
IO.46	H10.4	I/O	•	General-purpose I/O. Normally configured as analog input AN6 to the PPM processor.
10.47	H10.2	I/O	•	General-purpose I/O. Normally configured as analog input AN7 to the PPM processor.

PPM PIN DESCRIPTIONS – Power

Name	Pin	I/O	CSKB	Description
+5V USB	H10.49		•	+5V USB power. From USB host. Powers on-board USB-to-
+57_055	H10.50	_	•	serial converter and PPM.
+5V SYS	H10.51		•	+5V system power. From EPS or external +5V connector.
+57_515	H10.52	_	•	Powers some on-board peripherals and PPM.
VCC SD	H10.53			SD Card power. Nominally +3.3V. Sourced from PPM or from
VCC_5D	H10.54	_		VCC_SYS via R58.
VCC	H10.55			MB power and I/O level. From +1.65V to +5.5V. Sourced
VCC	H10.56	_		from PPM or from VCC_SYS via R68.
DGND	H10.57		•	Digital groupd
DGND	H10.58	_	•	Digital ground.
AGND	H10.59		•	Analog ground.
AGND	H10.60	—	•	Analog ground.
VBATT	H10.61		•	Battery voltage. EPS-dependent. Typically +7V to +10V.
VDATI	H10.62	_		Dattery voltage. Lr S-dependent. Typically +7 v to +10 v.
VBACKUP	H10.63		•	Battery backup voltage (e.g. for RTC). From MB's 3V Lithium
VBACKUP	H10.64	_	•	battery BT1.

PPM PIN DESCRIPTIONS – Analog References

Name	Pin	I/O	CSKB	Description
VREF0	H10.65	-	•	Intended for analog voltage references.
VREF1	H10.67	-	•	Intended for analog voltage references.
VREF2	H10.69	-	•	Intended for analog voltage references.

PPM PIN DESCRIPTIONS – Reserved

Name	Pin	I/O	CSKB	Description
RSVD0	H10.71	_	•	Not connected. Reserved for future use.
RSVD1	H10.73	_	•	Not connected. Reserved for future use.
RSVD2	H10.75	_	•	Not connected. Reserved for future use.

PPM PIN DESCRIPTIONS – MB-Specific

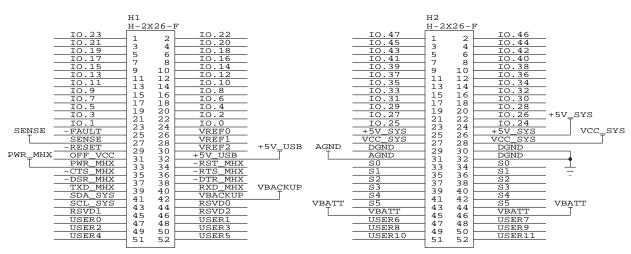
Name	Pin	I/O	CSKB	Description
CB4				Configurable CBUS4 signal from FT232R USB chip υ7.
USBDP	H10.77	Ι		When $U7$ is not fitted and $R56$ is fitted, provides the '+' half of the USB differential signal pair from $J3$ to the PPM processor.

CB2			Configurable CBUS2 signal from FT232R USB chip 07 .
USBDM	H10.79	I	When U7 is not fitted and R57 is fitted, provides the '-' half of the USB differential signal pair from J3 to the PPM processor.
-ON_SD	H10.81	0	Control signal for SD Card power. Active LOW, pulled high on MB. When active, enables VCC_CARD on MB, thereby powering SC Card socket and SD Card level translators / isolators U17 & U18. Normally configured as a digital output from the PPM processor.
-ON_MHX	H10.83	0	Control signal for MHX socket power. Active LOW, pulled high on MB. When active, enables PWR_MHX on MB, thereby powering MHX socket and MHX level translators / isolators U2 & U3 . Normally configured as a digital output from the PPM processor.
-OE_MHX	H10.85	0	Control signal for MHX interface. Active LOW, pulled high on MB. When active, enables signals to pass through MHX level translators / isolators v2 & v3. Normally configured as a digital output from the PPM processor.
-OE_USB	– H10.87	Ο	Control signal for USB interface. Active LOW, pulled high on MB. When active, enables signals to pass through USB level translators / isolators U1 & U16. Normally configured as a digital output from the PPM processor.
-INT		I	Output from RTC's –IRQ open-collector output. When properly configured, can be used to interrupt Processor via RTC. <i>Normally configured as a digital input to the PPM processor.</i>
нзо	H10.89	I	Handshake signal. –RTS (USB) or –CTS (MHX). Normally an input to the PPM processor. Requires that R10 be fitted on the MB.
HS1	H10.91	I	Handshake signal. –DTR (USB) or –DSR (MHX). Normally an input to the PPM processor. Requires that R11 be fitted on the MB.
HS2	H10.93	I	Handshake signal. –PWE (USB) or –DCD (MHX). Normally an input to the PPM processor. Requires that R12 be fitted on the MB.
нзз	H10.95	0	Handshake signal. –CTS (USB) or –RTS (MHX). Normally an output from the PPM processor. Requires that R75 be fitted on the MB.
HS4	H10.97	ο	Handshake signal. –RI (USB) or –DTR (MHX). Normally an output from the PPM processor. Requires that R76 be fitted on the MB.
нз5	H10.99	ο	Handshake (reset) signal. –RST (USB) or –RST (MHX). Normally an output from the PPM processor. Requires that R 77 be fitted on the MB.

PPM PIN DESCRIPTIONS – Control & Status

Name	Pin	I/O	CSKB	Description
-FAULT_OC	H10.66	0		Open-collector output from PPM's latchup prevention overcurrent switch. Active LOW. Wire-ORed to –FAULT_OC on MB.
SENSE	H10.68	0	•	Can be used to measure PPM's current consumption. The current used by the PPM from a single source is (source – sense) / 75mΩ. Depends on PPM implementation.
-RESET	H10.70	I	•	Reset signal to PPM's reset supervisor. Active LOW.
OFF_VCC	H10.72		•	Control signal to PPM's power circuit(s). Active HIGH.

PPM PIN DESCRIPTIONS – I2C Bus


Name	Pin	I/O	CSKB	Description
SDA_SYS	H10.74	I/O	•	I2C data. Normally configured as an I2C data input/output to/from the processor.
SCL_SYS	H10.76	0	•	I2C clock. Normally configured as an I2C clock output from the PPM processor.

PPM PIN DESCRIPTIONS – User-defined

Name	Pin	I/O	CSKB	Description
USER0	H10.78	I/O	•	User-defined.
USER1	H10.80	I/O	•	User-defined.
USER2	H10.82	I/O	•	User-defined.
USER3	H10.84	I/O	•	User-defined.
USER4	H10.86	I/O	•	User-defined.
USER5	H10.88	I/O	•	User-defined.
USER6	H10.90	I/O	•	User-defined.
USER7	H10.92	I/O	•	User-defined.
USER8	H10.94	I/O	•	User-defined.
USER9	H10.96	I/O	•	User-defined.
USER10	H10.98	I/O	•	User-defined.
USER11	H10.100	I/O	•	User-defined.

CubeSat Kit Bus PIN DESCRIPTIONS 20

Those signals that are connected directly between the CubeSat Kit Bus connectors **H1** and **H2** and the PPM connector **H10** are tagged under the PPM label below.

CubeSat Kit Bus Connectors

CubeSat Kit Bus PIN DESCRIPTIONS - I/O

Name	Pin	I/O	PPM	Description
				-Cs_sp. Controls SD Card interface. Part of the MB's SD
IO.0	H1.24	I/O	٠	card interface. Normally configured as an output from the
				PPM processor.
				SDO0. SPI master data out. Part of the MB's SD card
10.1	H1.23	I/O	•	interface. Normally configured as an output from the PPM
				processor.
10.2	H1.22	I/O	•	SDI0. SPI master data in. Part of the MB's SD card interface.
				Normally configured as an input to the PPM processor.
10.3	H1.21	I/O	•	SCK0. SPI clock. Part of the MB's SD card interface.
	111.21	"0		Normally configured as an output from the PPM processor.
10.4	H1.20	I/O	•	UTX0 . Tx0 data out. Often configured as an output from the
	111.20	"0		PPM processor.
10.5	H1.19	1/0	•	URX0. Rx0 data in. Often configured as an input to the PPM
10.5	111.13	"0		processor.
				UTX1. Tx1 data out to MHX transceiver or USB. Part of the
IO.6	H1.18	I/O	•	MB's MHX/USB interface. Normally configured as an output
				from the PPM processor.
				URX1. Rx1 data in from MHX transceiver or USB. Part of the
IO.7	H1.17	I/O	•	MB's MHX/USB interface. Normally configured as an input to
				the PPM processor.
IO.8	H1.16	I/O	•	General-purpose I/O.
IO.9	H1.15	I/O	•	General-purpose I/O.
IO.10	H1.14	I/O	•	General-purpose I/O.
10.11	H1.13	I/O	•	General-purpose I/O.
10.12	H1.12	I/O	•	General-purpose I/O.
IO.13	H1.11	I/O	•	General-purpose I/O.
IO.14	H1.10	I/O	•	General-purpose I/O.
10.15	H1.9	I/O	•	General-purpose I/O.
IO.16	H1.8	I/O	•	General-purpose I/O.

²⁰ The fact that the CubeSat Kit Bus has 104 pins (like PC/104) is purely coincidental – the original CubeSat Kit Bus used in the Rev A and Rev B FM430 had only 80 pins, and was expanded in Rev C to 104 pins.

TO 15		1/0		
10.17	H1.7	I/O	•	General-purpose I/O.
IO.18	H1.6	I/O	•	General-purpose I/O.
IO.19	H1.5	I/O	•	General-purpose I/O.
10.20	H1.4	I/O	•	General-purpose I/O.
10.21	H1.3	I/O	•	General-purpose I/O.
10.22	H1.2	I/O	•	General-purpose I/O.
IO.23	H1.1	I/O	•	General-purpose I/O.
10.24	H2.24	I/O	٠	General-purpose I/O.
10.25	H2.23	I/O	٠	General-purpose I/O.
IO.26	H2.22	I/O	٠	General-purpose I/O.
IO.27	H2.21	I/O	•	General-purpose I/O.
IO.28	H2.20	I/O	•	General-purpose I/O.
IO.29	H2.19	I/O	•	General-purpose I/O.
IO.30	H2.18	I/O	•	General-purpose I/O.
IO.31	H2.17	I/O	•	General-purpose I/O.
IO.32	H2.16	I/O	•	General-purpose I/O.
IO.33	H2.15	I/O	•	General-purpose I/O.
IO.34	H2.14	I/O	•	General-purpose I/O.
IO.35	H2.13	I/O	•	General-purpose I/O.
IO.36	H2.12	I/O	•	General-purpose I/O.
IO.37	H2.11	I/O	•	General-purpose I/O.
IO.38	H2.10	I/O	•	General-purpose I/O.
IO.39	H2.9	I/O	٠	General-purpose I/O.
IO.40	H2.8	I/O	•	General-purpose I/O. Normally configured as analog input
10.40	112.0	1/0	•	AN0 to the PPM processor.
10.41	H2.7	I/O	•	General-purpose I/O. Normally configured as analog input
10.41	112.7	1/0	•	AN1 to the PPM processor.
IO.42	H2.6	I/O	•	General-purpose I/O. Normally configured as analog input
10.42	112.0	1/0	-	AN2 to the PPM processor.
IO.43	H2.5	I/O	•	General-purpose I/O. Normally configured as analog input
10.43	П2.Э	1/0	•	AN3 to the PPM processor.
IO.44	H2.4	I/O	•	General-purpose I/O. Normally configured as analog input
10.44	^[] 2.4	1/0	-	AN4 to the PPM processor.
IO.45	H2.3	I/O	•	General-purpose I/O. Normally configured as analog input
10.45	⊓∠.3	1/0	•	AN5 to the PPM processor.
TO 46			•	General-purpose I/O. Normally configured as analog input
IO.46	H2.2	I/O	•	AN6 to the PPM processor.
70.45	110.4	1/0		General-purpose I/O. Normally configured as analog input
IO.47	H2.1	I/O	•	AN7 to the PPM processor.

CubeSat Kit Bus PIN DESCRIPTIONS – Analog References

Name	Pin	I/O	PPM	Description
VREF0	H1.26	-	٠	Intended for analog voltage references.
VREF1	H1.28	-	٠	Intended for analog voltage references.
VREF2	H1.30	-	•	Intended for analog voltage references.

CubeSat Kit Bus PIN DESCRIPTIONS – Reserved

Name	Pin	I/O	PPM	Description
RSVD0	H1.44	-	٠	Not connected. Reserved for future use.
RSVD1	H1.45	_	٠	Not connected. Reserved for future use.
RSVD2	H1.46	_	٠	Not connected. Reserved for future use.

Name	Pin	I/O	PPM	Description
SDA_SYS	H1.41	I/O	•	I2C data. Normally configured as an I2C data input/output to/from the processor.
SCL_SYS	H1.43	0	•	I2C clock. Normally configured as an I2C clock output from the PPM processor.

CubeSat Kit Bus PIN DESCRIPTIONS – I2C Bus

CubeSat Kit Bus PIN DESCRIPTIONS – Control & Status

Name	Pin	I/O	PPM	Description
-FAULT	H1.25	0	•	Open-collector output. Active LOW. Active when an overcurrent fault condition is detected by any of the MB's or PPM's latchup prevention overcurrent switches. With series $4.7k\Omega$ resistor. Normally pulled up externally to vcc_svs or $+5v_svs$.
SENSE	H1.27	0	•	Can be used to measure PPM's current consumption. The current used by the PPM from a single source is (source – $sense$) / 75m Ω . Depends on PPM implementation.
-RESET	H1.29		٠	Reset signal to PPM's reset supervisor. Active LOW.
OFF_VCC	H1.31		•	Control signal to PPM's power circuit(s). Active HIGH.

CubeSat Kit Bus PIN DESCRIPTIONS – RBF and Launch Switches

Name	Pin	I/O	PPM	Description
S 0	H2.33			Switch terminal. Normally connected to RBF Switch normally
50	H2.34	_		closed (NC) terminal.
S1	H2.35			Switch terminal. Normally connected to Separation Switch
51	H2.36	_		normally closed (NC) terminal.
S2	H2.37			Switch terminal. Normally connected to RBF Switch normally
52	H2.38	—		open (NO) terminal.
53	H2.39			Switch terminal. Normally connected to Separation Switch
22	H2.40	_		normally open (NO) terminal.
S4	H2.41			Switch terminal. Normally connected to RBF Switch common
54	H2.42	_		(C) terminal.
S 5	H2.43			Switch terminal. Normally connected to Separation Switch
55	H2.44	_		common (C) terminal.

CubeSat Kit Bus PIN DESCRIPTIONS – Power

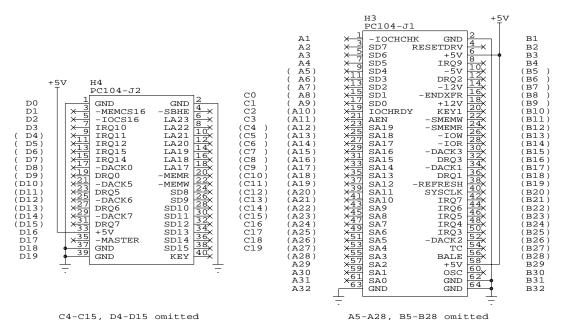
Name	Pin	I/O	PPM	Description
VBATT	H2.45 H2.46	-	•	Battery voltage. EPS-dependent. Typically +7V to +10V.
+5V_USB	H1.32	-	٠	+5V USB power. From USB host.
+5V_SYS	H2.25 H2.26	-	•	+5V system power. From EPS or external +5V connector.
PWR_MHX	H1.33	_	•	MHX transceiver power. Derived from +5v_sys or vCC_sys system power. Under PPM control. The current used by the MHX transceiver is (+5v_sys - pwr_MHx) / 75mΩ or (vCC_sys - pwr_MHx) / 75mΩ, depending on the source of MHX power. Can be overridden by feeding +5v_sys or vCC_sys directly into pwr_MHx.
VBACKUP	H1.42	-	•	Battery backup voltage (e.g. for RTC). From MB's 3V Lithium battery BT1.
VCC_SYS	H2.27 H2.28	-	•	VCC system power. Normally generated by EPS. Not normally connected to MB's local vcc.
AGND	H2.31	—	•	Analog ground.

DGND	H2.29 H2.30 H2.32	_	•	Digital ground.
------	-------------------------	---	---	-----------------

CubeSat Kit Bus PIN DESCRIPTIONS – Transceiver Interface

Name	Pin	I/O	PPM	Description	
-RST_MHX	H1.34	Ι		Reset input to transceiver. Active LOW.	
-CTS_MHX	H1.35	0		Clear-to-send output from transceiver. Active LOW.	
-RTS_MHX	H1.36	Ι		Request-To-Send input to transceiver. Active LOW.	
-DSR_MHX	H1.37	0		Data Set Ready output from transceiver. Active LOW.	
-DXX_MHX	H1.38	I/O		-DTR_MHX when R91 is fitted and R92 is not fitted: ²¹ Data Transmit Ready input to transceiver. Active LOW. -DCD_MHX when R92 is fitted and R91 is not fitted: Data Carrier Detect output from transceiver. Active LOW.	
TXD_MHX	H1.39	Ι		Transmit data input to transceiver. Idles HIGH.	
RXD_MHX	H1.40	0		Receive data output from transceiver. Idles HIGH.	

CubeSat Kit Bus PIN DESCRIPTIONS – User-defined


Name	Pin	I/O	PPM	Description
USER0	H1.47	I/O	•	User-defined.
USER1	H1.48	I/O	•	User-defined.
USER2	H1.49	I/O	•	User-defined.
USER3	H1.50	I/O	•	User-defined.
USER4	H1.51	I/O	•	User-defined.
USER5	H1.52	I/O	•	User-defined.
USER6	H2.47	I/O	•	User-defined.
USER7	H2.48	I/O	•	User-defined.
USER8	H2.49	I/O	•	User-defined.
USER9	H2.50	I/O	•	User-defined.
USER10	H2.51	I/O	•	User-defined.
USER11	H2.52	I/O	•	User-defined.

²¹ Default.

PC/104 System Bus PIN DESCRIPTIONS

PC/104 System Bus

Only +5V and GND are implemented.

The MB implements a subset of the PC/104 specification in the form of two connectors that provide only +5V and GND for PC/104 modules. Only a total of 32 pins are implemented, 16 on H3 and 16 on H4. By adding up to four 8-pin connectors to the MB, PC/104 modules can be plugged directly into the MB to obtain +5V power and GND. No other connections between the PC/104 bus and the CubeSat Kit Bus are provided.

CONNECTORS

ltem	Description	Source	Part Number	Application
1	52-pin non-stackthrough	Samtec ²²	ESQ-126-37-G-D	CubeSat Kit Bus connector for non- stackthrough applications (e.g., MB option /00).
2	52-pin stackthrough	Samtec	ESQ-126-39-G-D	CubeSat Kit Bus connector for stackthrough applications (e.g., MB option /10).
3	52-pin	Samtec	SSQ-126-22-G-D	CubeSat Kit Bus connector 10mm extension.
4	8-pin non-stackthrough	Samtec	ESQ-104-37-G-D	CubeSat Kit PC/104 power connector for non-stackthrough applications.
5	8-pin stackthrough	Samtec	ESQ-104-39-G-D	CubeSat Kit PC/104 power connector for stackthrough applications.
6	8-pin	Samtec	SSQ-104-22-G-D	CubeSat Kit PC/104 power connector 10mm extension.
7	100-pin, hermaphroditic	Samtec	LSS-150-02-L-DV	PPM connector (standard, +6mm)

Items 1-6: Non-stackthrough connectors are normally fitted only to an MB and form an endpoint to the CubeSat Kit Bus connector stack. Stackthrough connectors are normally fitted to all other modules (e.g. EPS modules). The normal stacking height is 15mm between modules. The 10mm extension can be used to increase this distance, e.g. to 24/25mm. 8-pin connectors are used to provide +5V and GND (only) to PC/104 modules. A 15mm extension can be accomplished via a stackthrough connector.

²² <u>http://www.samtec.com/</u>, 1-800-SAMTEC9.

This connector information is provided for reference only.

REPLACEMENT FUSES

The overcurrent fuse F1 protects only against overcurrent conditions drawing too much current from the external +5V dc supply. It is soldered in place. The replacement fuse is LittleFuse 0451004.MRL, 4A, 125V, fast-acting Nano SMF Fuse, and is available e.g. through Digi-Key®. Should replacement be required, it should be replaced by the factory or by a qualified electronics technician.

BACKWARDS COMPATIBILITY

MB Rev E is fully backwards-compatible with MB Rev D.

MHX WIRELESS TRANSCEIVER COMPATIBILITY

The MB is designed to interface directly to Microhard Corporation's²³ line of MHX OEM wireless transceiver modules, and any other footprint-compatible transceivers. The mechanical interface is through four M2.5 F/F threaded standoffs at a prescribed height of 15.5mm above the MB PCB. The electrical interface is through the MB's #5 connectors, which connect the MHX module to the MB via the MHX pins 1-17 and 21-33 only.²⁴ Because of minor physical differences between the earlier (e.g., MHX-2400) and later (e.g., MHX-2420) Microhard transceivers, the MB as supplied from the factory supports only later transceivers. The MB uses a high-side switch for **PWR MHX** capable of supplying currents to the transceiver in excess of the 1.2A. Either +5V_SYS or VCC_SYS can be the source of MHX_PWR, based on the fitment of R87 or R88.

MULTIPLE / REDUNDANT SEPARATION SWITCHES

The Rev E MB PCB has a cutout in the vicinity of H3 to support a second, independent Separation Switch sw4. When a second Separation Switch is used, the end-user must facilitate connecting its terminals to those of the primary Separation Switch (sw2), if used in such a manner.

EXTERNAL DC POWER INPUT

The MB accepts external DC power and implements overvoltage, reverse voltage and overcurrent protection at DC power jack J1. J1 can be used in two distinct and different ways: for 5Vdc power in, or for 6-25Vdc power in. When the voltage at J1 is under +5.5Vdc, power is passed to +5v_sys and to connector J19. For voltages above +5.5Vdc, an active circuit isolates J1 from +5V SYS and power is passed only to connector J19. In all cases, up to 4A can pass through J1. A conforming 5.5mm/2.1mm plug must be used at all times to ensure the proper operation of the MB's overvoltage protection circuitry on **J1**.

For implementations with an architectural power dependency on +5V SYS, an external +5Vdc power supply can provide up to 20W of power to the MB via J1. For implementations dependent on a different bus power voltage, J1's dual-input-range feature can be used. For example, in an architecture with a four-cell Li-lon battery chemistry,²⁵ 14.8V can be applied at J1 and can be routed to an endpoint within the system via a user harness from the MB connector **J19**.²⁶ In this configuration, the MB can source up to 100W through J1. See the MB schematics for more information.²⁷

²³ <u>http://www.microhardcorp.com/</u>.

²⁴ These pins were originally No Connect (NC) on the MHX-2400 and similar modules. Later versions use these pins. The functionality of most of these additional pins is not required to operate these newer MHX modules (e.g., MHX-2420), and hence they are backwards-compatible with the earlier MHX modules. ²⁵ Li-Ion nominal cell voltage is 3.7V, peak is typically 4.2V. The nominal battery voltage for four cells in series – a 4S1P

configuration - is therefore 14.8V.

²⁶ A 1x5 0.100" pitch square-pin male header with the center pin removed.

²⁷ A high-power Schottky diode D15 is present in-line between J1 and J19. Sophisticated users wishing to implement advanced functions - e.g. using J1 as a means to charge batteries within a CubeSat - may choose to bypass D15 so as to be able to sense battery voltage. Contact the factory for more details.

TRADEMARKS

The following are Pumpkin trademarks. All other names are the property of their respective owners.

- Pumpkin[™]and the Pumpkin logo
- Salvo[™] and the Salvo logo
- CubeSat Kit[™] and the CubeSat Kit logo

DISCLAIMER

PUMPKIN RESERVES THE RIGHT TO MAKE ANY CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO CORRECT ERRORS AND IMPROVE RELIABILITY, FUNCTION, APPEARANCE OR DESIGN. PUMPKIN DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

744 Naples Street San Francisco, CA 94112 USA tel: (415) 584-6360 fax: (415) 585-7948

web: <u>http://www.pumpkininc.com/</u> email: <u>info@pumpkininc.com</u> web: <u>http://www.cubesatkit.com/</u> email: <u>info@cubesatkit.com</u>