
Support for development and
integration testing is provided in
the form of graphical and
command line tools which can
communicate with flight software,
acting as 'ground'. The graphical TMTC Lab
operates using the software model and
permits all space-ground interactions to be
tested with ease. Additional libraries, including
support for Java and Python, allow
sophisticated automated test scripts to be
developed using the power of the software
model.

flight software development kit

datasheet

Flight Software Development Kit (FSDK) is a unique, innovative development environment, which permits the creation of
mission-specific spacecraft flight software using configurable, off-the-shelf software components. It comprises three
major parts: an extensive library of validated components, a lightweight framework which promotes portability and
modularity, and tooling to support component development, software integration and test.

extensive component library

modular communications
The FSDK is designed to construct modular
communications stacks from components.
Interfaces between components follow a
standard pattern based on services.

This approach allows individual layers of the stack to be
modified or substituted without impacting layers above and
below. By replacing the lowest communications layers,
interfaces or links can be emulated for testing.

As protocols are kept separate from the functions of the
software, the FSDK allows different protocols to be used
without impacting software capabilities.

development tooling
FSDK tooling is built on a variety of
standard and cross-platform
technologies and can be readily
adapted to suit different processes.
Graphical tooling integrates with
the Eclipse environment, whilst the complete
build system is fully accessible from the
command line and can be easily automated.
FSDK tooling helps guide engineers through
the software development process rapidly,
promoting an agile and iterative approach.

test support tooling

The FSDK component library includes a
wide range of components covering all
mission needs. As with all elements of our
FSDK, components are developed to a
strict coding standard based on industry
norms for mission-critical software.

Subsystem components: for many commercial off-the-shelf
products such as electronic power systems, attitude control
systems and radios

Data handling components: gathering, pooling, logging and
reporting telemetry parameters from the complete system

Monitoring components: checks on parameters to validate
correct system operations

Communications components: monitoring, control and
reporting to and from ground or other systems using a
variety of standard protocols

Automation components: automation of onboard activities
such as responding to events and scheduling onboard
operations based on relative time, absolute time or
spacecraft orbit

Mission components: manage the spacecraft mode and
separation sequence

application component

service protocol handler

network protocol handler

interface component

mission ready software.

 @brightascension
 @bright-ascension-ltd

+44 (0) 1382 602041
enquiries@brightascension.com
www.brightascension.com

FIND OUT MORE FOLLOW US

Define
Component Type

XML C

XML

HTML HTMLSCDB

XML Binary

Component Library

Implement
Component Type

Define
Deployment

Configure
Component Instances

Generate
Spacecraft Database

Generate
Library

Documentation

Generate

Generate
Skeleton

Build

Deploy onto
Target

C

C

development tooling workflow

platform abstraction
and services

The core of the FSDK is the
model, which captures the
architecture of the software
being built in terms of the
components being used. The
interfaces to all types of
components are described in a short XML file
together with documentation. These
component types can then be instantiated
and assembled together to make a
fully-functional flight software deployment
according to a flexible specification. The
tooling uses this specification to generate
simple and efficient code, specific to the flight
software deployment, which 'glues' the
components together and lets them interact.
Code generation is also provided to speed up
component development and provide
templates for component unit testing using
the Unity and CMock tools.
Using information from the model, additional tooling is able to generate full documentation, for developers or
operators, which describes the components and how they can be used. The GenerationOne model can also be
exported, allowing it to be used by external applications such as the GenerationOne Mission Control Software.

Services allow components to
interact in standard ways and
are at the heart of the
GenerationOne component
model and framework. The
FSDK framework is built around
a lightweight service mechanism which links
components using the information from the
underlying GenerationOne model.

Defining component interfaces in terms of
services gives many advantages:

Key functions can be separated from
communications protocols allowing much
more efficient use onboard and enabling
greater software reuse

Standard services for important activities,
such as working with telemetry
parameters, permit operators to work at a
higher semantic level

Applying standard services to
input/output onboard abstracts
components away from the underlying
platform and promotes portability

Location-independent services allow the
easy distribution of flight software across
multiple computing platforms without
adding operational complexity

rapid and portable development
The extensive component library of the FSDK, together with
the development tooling, permits the rapid development of
mission-specific flight software. By making use of the
portability and modularity features of the FSDK, your flight
software can be targeted to execute on a desktop workstation,
allowing early prototyping, debugging and team development.
Similarly, it is trivial to replace subsystem software
components with simulations, permitting development and
testing even if key hardware is unavailable.

The FSDK includes full source code for all flight software and is
accompanied by an in-depth User Manual. Also included are a
number of tutorials and fully-featured examples, carefully
designed to introduce all key FSDK concepts and to allow the
rapid development of mission-specific flight software.

documentation and tutorials

Through our unique, efficient approach to platform
abstraction, we can also support a range of operating systems
from vanilla Linux to hard real-time environments such as
FreeRTOS and RTEMS. Library components allow access to
system peripherals and subsystems in a regular way,
permitting a high degree of modularity. Where the underlying
platform provides fully featured drivers, such as in a Linux
environment, driver components are simply responsible for
making these accessible to the rest of the system. In other
environments, especially when running on bare metal, drivers
are written as components making them fully portable.

platform and subsystem support

 @brightascension
 @bright-ascension-ltd

+44 (0) 1382 602041
enquiries@brightascension.com
www.brightascension.com

FIND OUT MORE FOLLOW US

FSDK_DSH_23-JUN-21_v1

